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A theory is developed for turbulence in a stably stratified fluid, for example in 
the experiments of Rouse & Dodu and of Turner where there is no shear and the 
turbulence is induced by a source of energy near the lower boundary of the fluid. A 
growing mixed layer of thickness D appears in the lower portion of the fluid and is 
separated from the non-turbulent fluid above, in which the buoyancy gradient is 
given, by an interfacial layer of thickness h. The lower mixed layer has a very weak 
buoyancy gradient and the large buoyancy difference across the interfacial layer 
is Ab. 

As indicated by the experiments of Thompson & Turner and Hopfinger & Toly, 
and derived by the author in a recent paper, if u is the root-mean-square horizontal 
velocity and 1 is the integral length scale, the eddy viscosity ul is a constant in a 
homogeneous fluid agitated by a grid. When there is stratification, the theory indicates 
that the fluid motion is unaffected by buoyancy forces in the mixed layer, so that ul 
should again be constant in the lower portions of the mixed layer. Since 1 is pro- 
portional to distance, we may conveniently suppose that the source of the disturbances 
is at  a level z = 0 where u is infinite in accordance with uz  = K .  Thus we may take 
K to be a fundamental parameter characterizing the turbulent energy source. Then z 
is distance above the plane of the virtual energy source. If the non-turbulent fluid has 
uniform buoyancy, DAb = U2 may be shown to be constant. In  general, whether con- 
stant or not, U may be taken to be a fundamental parameter expressing the stability. 
The quantity & = U2D2/K2 is the most fundamental of the several Richardson 
numbers that have been introduced in this problem because, with its use, ‘constants’ 
of proportionality do not depend on the molecular coefficients of viscosity or diffusion 
(for high Reynolds number turbulence) or on the geometry of the grid. 

The theory contains a number of results: 
(i) ue D I K  - Ri- i ,  where ue = dD/dt is the entrainment velocity. Integration 

yields D a tR for a homogeneous upper fluid and Dcc t )  for a linear upper density 
field. This - f entrainment law compares with a - $ law suggested by several experi- 
menters. 

(ii) Turbulence in the interfacial layer is intermittent with intermittency factor 
I ,  N Ri-2. The turbulent patches have dimension S, N DRi-p. 

(iii) If the (equal) root-mean-square velocities in an infinite homogeneous fluid at 
a distance D from the grid are denoted by u1 N v1 - wl,_we find that the r.m.s. velo- 
cities near the interface are u2 N ul, v2 - u1 and w2 N u1 Ri-a. 

(iv) The buoyancy flux q2 near the interface may be expressed as q2 N wilD. 
(v) h N D,  as observed in several experiments. 
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1. Introduction 
Experimental observations beginning with those by Rouse & Dodu (1955) show 

that if a stably stratified fluid is agitated, say at  the bottom of a container, a mixed 
layer develops near the bottom whose depth D increases with time. The observed 
mean buoyancy profile is shown schematically in figure 1. The turbulence dies out 
across an interfacial layer of thickness h across which there is a large buoyancy 
difference Ab. The problem has great importance in meteorology and oceanography 
as discussed by many authors, for example Kraus & Turner (1967). 

Cromwell (1960) constructed a similar experiment to simulate the pycnocline but 
recent interest began with the careful measurements by Turner (1968). Subsequently 
many others have reported on identical or similar experiments (Brush 1970; Wolanski 
1972; Linden 1973; Crapper & Linden 1974; Linden 1975; Wolanski & Brush 1975; 
Thompson & Turner 1975; Hopfinger & Toly 1976). Other experiments involving 
shear have been run by Kato & Phillips (1969), Moore & Long (1971), Wu (1973) 
and Kantha, Phillips & Azad (1977). Typical of these is that of Kato & Phillips, 
shown schematically in figure 2. 

For the experiments without shear, experimenters have proposed that the entrain- 
ment velocity u, = dD/dt is given byt  

where Ri' is the overall Richardson number, f is the frequency and S is the stroke 
of the grid. In  shearing experiments there is some indication that u,/u* - Ri*-l, 
where Ri* is defined in terms of the friction velocity u', but considerable doubt has 
been raised by recent experiments (Kantha et al. 1977) in the Kato & Phillips tank. 

A suggestion was made by Turner (1973) that the entrainment velocity should be 
expressed in terms of Ab and a velocity and length ul and I ,  characteristic of the r.m.s. 
velocity and the integral length scale evaluated in a region (region R,) near the middle 
of the mixed layer. He suggested that ul - fS and I ,  - D ;  then (1) implies 

where Ri, is the turbulent Richardson number defined in terms of Ab, u1 and I , .  Long 
( 1  975), however, presented a uniform theory for all cases in which the buoyancy flux 
near the interfacial layer q2 - u$/D, where u2 is the order of magnitude of the velocity 
components (all assumed of equal order) in the mixed layer near the interface (region 
R2).  This implies an Ri;l law for ue/u2, where Ri, = DAb/u:. Long attempted to re- 
concile his theory and the expression in (2) by assuming that the small density varia- 
tion in the mixed layer was sufficient to change the order of magnitude of the turbulent 
velocities from u1 w f S in the lower part of the layer to u2 - f SRi'-i, or u2a f *. This 
conjecture was investigated experimentally by Hopfinger & Toly, who concluded 
that the velocities were everywhere proportional to f and that (2) is correct. The 
present paper finds that the turbulence near the interface becomes strongly aniso- 
tropic, in particular that u2 - v2 - u, (and are therefore proportional to f ), but that 

t In  this paper, we assume strong stability in the sense that the overall Richardson number 
Ri* or a similar non-dimensional number is large. If two non-dimensional numbers A and B 
have a ratio AIB tending to a finite, non-zero constant as Ri* -+ m, we say that A is of order B 
and write A - B.  We use the proportionality symbol to connect two-dimensional quantities 
that  vary together. 

ue/fS - Ri"-*, Ri' = DAb/faS2, ( 1 )  

U J U ~  N Riit, (2) 
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FIGURE 1.  The container has a fluid with variable mean buoyancy profile 6. The lower layer of 
depth D is fully turbulent and has a weak buoyancy gradient. The buoyancy decreases strongly 
in an interfacial layer of thickness h between the mixed layer and the non-turbulent layer above, 
the buoyancy difference across h being Ab. The upper layer has a buoyancy gradient b(z ) .  The 
turbulence is caused by a grid oscillating up and down with stroke S and frequency f. The 
geometry and location of the grid are given by lengths MI, M,, . . . . 

FIGURE 2. Kato & Phillips experiment with mean buoyancy profile. The turbulence in the 
upper layer is caused by a screen moving along the surface and exerting a stress T = u:, where 
u. is the friction velocity. 

w2 becomes small for high Richardson numbers. We now find qz N wi/D and since 
w2 < ul, we obtain a slower entrainment rate, namely ue/ul N R@. The decrease in 
the turbulent velocity w2 near the interface is explained by a process similar to that 
discussed by Hunt & Graham (1978) in connexion with homogeneous turbulence 
near a plane and is not related to the weak density variation in the mixed layer as 
proposed by the author in the paper referred to above. With respect to the grid 
frequency, the theory predicts uzoc v20t f ,  but wzoc f 8 .  
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In  the theory below, we emphasize the presence of an interfacial layer (region R3) 
of thickness h separating the mixed layer from the non-turbulent Auid above. All 
observations (for example Wolanski & Brush 1975) indicate that the mixed layer is 
in fully developed turbulent motion with very little density variation and that the 
interfacial layer with its large density gradient is typified by wave motion. Wolanski 
& Brush found that the frequency of the disturbances in the interfacial layer was 
proportional to the Brunt-Vtiisalii frequency (Ab/h)* although numerically one order 
of magnitude smaller. Some authors (Crapper & Linden 1974; Hopfinger & Toly 1976) 
give a qualitative picture of eddies ‘penetrating’ the interface from the mixed layer, 
but a satisfactory picture of the mixing process across the interfacial layer has not 
yet been produced. Certainly turbulence of some kind exists in the interfacial layer 
and since the density gradient is strong rather than weak as in the mixed layer, it is 
reasonable to assume, as we do in the theory, that the turbulence in the interfacial 
layer is intermittent and that this intermittent, weak turbulence transfers the buoy- 
ancy in the layer. This is also the opinion of Wolanski & Brush. In the theory of this 
paper, the intermittency factor decreases with increasing stability, so that for the 
large Richardson numbers of the asymptotic theory, the layer is, for the most part, 
in laminar wave motion with occasional breaking waves in the interior and at  the lower 
surface of the interface. 

It is remarkable that h appears to be proportional to D and is uninfluenced by the 
stability. This was first noticed in cases in which two turbulent layers are separated 
by an interfacial layer (Long 1973; Crapper & Linden 1974) but has also been reported 
in experiments with only one turbulent layer as in the present paper (Wolanski & 
Brush 1975; Hopfinger & Toly 1976). Crapper & Linden found h/D to be constant 
as the Richardson number varied from 4 to 6000. Hopfinger & Toly distinguish 
between h,, mea.sured during the running of the experiment, and h,, measured after 
the agitation has been stopped and the motion has come to rest. The difference between 
the two decreases with Richardson number, so that for large Richardson numbers 
h N h, and h, was found to be independent of Ri. The behaviour h = aD is derived 
below. 

The theory assumes a linear density field in the interfacial layer. This is well sup- 
ported by observations (Wolanski & Brush 1975) when the upper layer is either 
turbulent or consists of non-turbulent homogeneous fluid. When the upper fluid has 
a linear density gradient as in the experiments of Linden ( 1975) the division between 
the upper fluid and the fluid in the interfacial layer may become unclear (his figure 1) 
when the two gradients differ rather little but this should not be a serious objection 
to the present model. 

2. Governing parameters 
We begin by considering the best choice of parameters governing the phenomena 

in the experiment. The external quantities are the frequency of oscillation of the 
grid f, the stroke S, lengths MI, M2, . . . , describing the geometry and position of the grid, 
the viscosity v, and the initial density variation. We assume that the dimensions of 
the tank are large enough to be neglected. In  a recent paper (Long 1978) the author 
has shown that the grid may be replaced by a virtual source of energy at a, horizontal 
plane. The ‘action ’ of the source is determined by a single parameter K having the 
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dimensions of viscosity and proportional to the constant eddy viscosity in the tur- 
bulent fluid above the source. When stratification exists, the eddy viscosity will be 
constant in the lower portions of the mixed layer since the velocities are very high 
there and buoyancy effects negligible, as we shall see. The integral length scale in the 
region 0 < z < D is proportional to the distance z from the virtual source. 

The role of the density stratification may be examined by integrating the equation 

aqpz = ai@t (3) 

first over the mixed layer and then over the interfacial layer. Let us assume a linear 
buoyancy field in the non-turbulent fluid with buoyancy gradient Nz. The mean 
buoyancy in the mixed layer is nearly constant with height~and equal to 

6, = b ,  - Nz(D + h) + Ab, 

where b ,  is constant. We get 
q2 = D x - N ' D - ( D + h ) .  dAb d 

dt 

In  the interfacial layer (region R,), the mean buoyancy is 

6, = Ab - (Ab/h) (2 - D )  + b ,  - N z ( D  + h).  

Integrating (3), we get 

where 6 = z - D .  At 5 = h the buoyancy flux is zero. Using this and ( 5 )  we get 

d [ ( D  + i h )  Ab - &N'(D + h)']/dt = 0. 

If the buoyancy field a t  the initial instant is the linear geld b ,  - N2z, ( 8 )  yields 

( D  + gh) Ab = &N2(D + h)a 

and N is the fundamental constant characterizing the buoyancy field. Otherwise the 
constant 

( 10)  V 2  = ( D  + Bh) Ab - &Nz(D + h)' 

and N may be used as fundamental constants. If the upper fluid is homogeneous, 
(D+Bh)Ab is constant. As indicated by experiment and by the theory of $4 ,  the 
interfacial thickness h is proportional to D ,  so that U2 = DAb may be used as a funda- 
mental constant when the upper fluid is homogeneous. The quantity Ri = U2Dz/K2 
has the form of a Richardson number and is useful whether or not U 2  is constant. 

3. The interfacial layer (region R3) 
The energy equation at any level z is 

o = - a[&w(2p/p0 + ~2 + ~2 + w ~ ) I / ~ z  - wb- E ,  (11)  

where q = - wb is the buoyancy flux and E is the energy dissipation. We assume that 
the velocities u, v and w are all of the same order of magnitude. This seems reasonable 
in view of our understanding of internal laminar and breaking waves. The interfacial 
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layer is turbulent with intermittency factor I,. Since buoyancy flux occurs only in the 
turbulent portions of this layer, we get, at any level in the interfacial layer R,, 

43 = -B1u3b313, (12) 

where B,  is a universal constant, u, is the r.m.9. velocity and b, is the r.m.s. buoyancy 
fluctuation in the interfacial 1ayer.t The turbulence is certainly strongly influenced by 
buoyancy in this layer, so that the kinetic and the available potential energy are of 
the same order not only in the waves but in the turbulent patches, i.e. 

U: = B2 8, b, = B3&z Ab/h, (13) 

where&, is of the order of the dimensions of the patches a t  any level in the interfacial 
layer. We get 

Using (13), (12) becomes 
&,/h = B$u,/(hAb)t. 

u31 3 (hAb)J Q"'-g 3 h  u3 a 

Let us now compute the dissipation. This occurs only in the turbulent patches, where 
cp = B4@&,, so that 

(16) 

Equations (15) and (16) show that E ,  - q,. Since these are both dissipative, it follows 
that they are of the order of the energy flux divergence. At the upper boundary of the 
interfacial layer, the kinetic energy of the waves has been so reduced by losses to 
potential energy and dissipation that there can no longer be wave breaking and 
turbuleice. Thus h is the depth of penetration of the turbulence. At the height 
z = D + h, the energy flux is too weak to support turbulence, so that it has decreased 
to a value well below that at the bottom of the interfacial layer. Therefore, the incre- 
ment in energy flux over the interfacial layer is proportional to the value at the 
bottom of the interfacial layer. Integrating between levels in the layer near the 
upper and lower surfaces, we get for the mean buoyancy flux 

E,  = B4 I3u;/S3 = B4 Bb la ui(hAb)J/hu,. 

q3h = - A , U ! ~ ,  (17) 

where u,,, is the r.m.8. velocity in the lower part of the interfacial layer. Obviously, 
there can be no change of order of magnitude of the vertical velocity across the level 
z = D, so that w2 - u,~. Using (7), we may write 

(18) 
A w3 dAb hdAb Abdh dD d - a2 = D -  +-- + -- + 4 Ab- - N2(D + +h)% ( D  + h),  

h dt 3 dt 6 dt dt 

dAb d 
~ i i ~  2 a(:))" dt dt 

--II w2 - = - D - + N z D - ( D + h ) ,  

where l2 and 8, are evaluated at a level just above x = D. 
f We use B,, B,, . . . to denote universal constants and A,, A,, . . . to denote 'constants' which 

vary with the stability of the upper, non-turbulent fluid. Rough estimates of the important 
constants of the paper are given in the appendix. 
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It is of interest to compute the energy flux in the lower part of the interfacial 
layer. In  the eddies, the contribution is of order I, w;. This is small compared with the 
total flux w,3, so that the transfer is due primarily to the waves and is of order 

where c is the speed of the energy-containing waves of length A, i.e. c - A(Ab/h)t. 
Since w$ c is of the order of wg, c - w,, or 

According to (19), h is of order of the length and amplitude of the breaking waves. 
It appears that pressures in the eddies in region R, of frequency w2/h of the order of 
the natural frequency (Ab/h)i are generating the breaking waves by resonance. The 
layer 22, has a thickness of the order of the amplitude 82  of the waves on the lower 
surface of the interfacial layer. 

W 2 P 2  - wit, 

h - W2(h/Ab)*. (21) 

4. Turbulence in the mixed layer and final results 
So far we have simply assumed turbulence below the interfacial layer without 

considering its properties in detail and the relation of these to the flux 4, or to the 
entrainment velocity u,. Let us consider the effect of buoyancy in the layer R,, where 
the magnitude of w is w,. Here q, N w2 b,  - wilh. Thus b, h - wf, so that the ratio 
of kinetic to available potential energy of the eddies, which is at least as large as 
wilb, a,, is 

This is very large for the highly stable conditions of this paper, so that the buoyancy 
variation is unimportant dynamically in R,. This will certainly also be true in the 
rest of the mixed layer, so that in the whole mixed layer mean quantities are deter- 
mined by factors independent of the buoyancy and depend only on K ,  D and distance 
z. We are concerned, particularly, with finding w2 in terms of K and D and the distance 
5 = D-z  from the lower surface of the interfacial layer. We do this by using the 
results of Hunt & Graham (1978) for the distortion of homogeneous turbulence by 
the presence of a rigid wall. The problem in the present paper is somewhat different 
because the turbulence in the mixed layer far from the interface is not homogeneous 
in the vertical direction but this does not have basic importance. 

Let us first assume that the surface at z = D is rigid. The presence of the surface 
then requires that the vertical component of the velocity tends to zero as 5+ 0. The 
pressure forces will cause energy to be transferred to the horizontal components. 
Since w2 --f 0 as {+ 0 and since the total kinetic energy is conserved near the surface 
(Hunt & Graham 1978), u; and v$ will increase to 8 of their values at  z = D in the 
absence of the surface. Thus u2 - v2 N u1 - KID, but w2 will be much smaller if 5 
is small. A t  small 5 eddies of length much less than 5 will not feel the distorting effect 
of the surface and will be isotropic. Eddies of length much greater than 5 will feel the 
surface very strongly and will be strongly flattened, while eddies of length of order 5 
will feel the surface but will remain quasi-isotropic. From the equation of continuity, 
the large flattened eddies of horizontal dimensions D yield wZf N u1 c/D - K5. The 
quasi-isotropic eddies will have a spectrum function 

E,(k) N ~ t k - 8 ,  k - {-I, 
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where k: is the wavenumber and 6, is the dissipation function near 6 = 0, so that the 
contribution is wgi - e i  64. This is much larger than wzf ,  so that w2 - e@. For large 
but finite Richardson numbers, the surface will not be %at but will be agitated by 
disturbances of amplitude 8, and we infer that w2 - et 8t in R,. Of course, e2 - K3/D4, 
so that w, N KS$/D*, or 

WiO"l8 ,  K 3  = B6. (23) 

Using (18)-(20) and (23), we may write 

A , B ~ B , ~ K ~  dAb hdAb Abdh dD d - = D - + - -  + - - + 8 Ab - - N2(D + +h);tt ( D  + h),  (25) haD6( A b)a dt 3 dt 6 dt dt 

We now find a relationship between h and D .  The dissipation function in the patches 
in R, is of order ui/S,. This is independent of &i in the lower portions of the layer, as 
we see in (23), and should remain independent of fii in the whole layer although it 
will certainly vary with </D and, perhaps, parameters expressing initial conditions and 
the stability of the upper layer. If we suppress the dependence on these parameters, 
we may write 

(28 )  

(29) 

We may obtain another expression for u! by integrating the energy equation over the 
interfacial layer. We have already seen that 8, N q3 and that the energy flux is pro- 
portional to ul in this layer, so that 

auilay = B, p,. (30) 

Using (7) and integrating, we get 

Comparison of (29) and (31) shows that 

= B!B$-A3-+A4-+A 6 6, - c3 
D 0 2  5D3' 

Equating coefficients, we get 

w$ = B:B$ ( ')' K' 
G g s  

(32) 

(33) 
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in agreement with (24 )  and, using ( 5 ) ,  

dAb d 
dt dt 

D--N'D-(D+h) = -- 

DdAb Ab dD D d  A h aKZ -- +-DD-N2--(D+h) =A(-) B, Ab 07' 
2 dt 2h dt 2 dt 

---+-Ab-=- D2dAb D2 dh A l (  - h ) i K z  - 
6h dt 6h2 dt B, Ab 0,' 
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(34 )  

(35) 

Equations (lo), (25 )  and (34)-( 36) together with initial conditions determine the 

(a)  Homogeneous upper JEuid ( N 2  = 0).  When the upper fluid is homogeneous, (10) 

(37 )  

problem. Let us find solutions for two important cases. 

becomes 

We then find that all equations are invariant under the following transformation: 

( D  + i h )  Ab = V t  = constant. 

4 (38 )  
t = Qlt' ,  D = a -x-K-* 11 v - 2  o l l  D' , h = a 2 K" 11 V-3-h' 

Ab = %% aii'i K- AAb', 

where a, is an arbitrary constant. The general solution for D is 

D/(Kt)a = f (V,t*/Ki). (39 )  

D = B, V,ii K h t h ,  h = aD, Ab = 2Vg/ (2+a)  D, (40 )  

Because a, is arbitrary, the solution has the form 

where B, and a are universal constants. The solution involves a virtual origin of time 
t = 0 when D is zero and Ab is infinite but the product DAb is finite. We have remarked 
that h = aD is observed in experiments with a 0.25 (Crapper & Linden 1974). 
Equation ( 4 0 )  corresponds to an entrainment velocity 

u,D/K = a,&-%, a2 = 6 A 2 B i / a a B t ( 3 + a ) ,  (41 )  

UJfS N Ri*-), Ri* = DAb/f2S2, (42 )  

w2 DlK = a1 &-a, a1 = B!a&/B$, (43 )  

6,/D = a,fii-i, a3 = B t d / B i ,  (44 )  

where a2 is a universal constant. As shown in experiments (Hopfinger & T d y  1976) 
and in a theory by the author (1978) ,  u1 (or K )  is proportional to the grid frequency f, 
so that ( 4 1 )  leads to 

compared with the Ri *f law suggested by experimenters. Inspection of their data, 
however, reveals little reason to choose one law in preference to the other. Other 
results are 

A 

I2 = a, Ri-g, a, = 6A2 Bi B2/B, aaBQ(3 +a) ,  (45 )  

where the ai are universal constants. 
( b )  Linear gradient in upper layer ( N 2  + 0). In  the case of a linear gradient in the 

upper layer, (10 )  yields V 2  = 0 if we trace back to t = 0, Ab = 0,  D = 0. We now find 
that all equations are invariant under the following transformation: 

t = a,t', D = a+KiN-l%D', h = a$KtN-Kh', 

Ab = N&*,KfAb', 
(46)  1 1 1 
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where a, is arbitrary. The general solution for D is 

D/(Kt)* = f ( N t ) .  (47) 

(48) 

Because a, is arbitrary, the solution for the initial condition D = 0 at t = 0 is 

D = B, K&N-i%, h = aD, R = N2h/Ab = (2 +a)  a/( 1 +a)2, 

where B, and a are universal constants. It is remarkable that the ratio of the buoyancy 
gradients in the upper fluid and the interfacial layer is a universal constant. If a = 0.25, 
this ratio is R = 0.36. The Richardson number behaviour for the linear case is the 
same as in (41) and (43)-(45). 

In  both case (a)  and case ( b )  the buoyancy fluctuations are given by 

b,/Ab - fii-3, b2fAb N fii-4, (49) 

which verifies that they have no dynamic effect in the mixed layer. 

5. Summary and conclusions 
It is now possible to form a reasonable description of the state of affairs in the 

experiment. The oscillating grid is nearly equivalent to a source of energy on a plane 
( z  = 0 )  as discussed by the author (1978). A single parameter K characterizes the 
source, where K has dimensions L2T-1. If the fluid is homogeneous the source; started 
at t = 0,  causes the development of a turbulent layer of depth D N (Kt)* separated 
by a front from the non-turbulent fluid above. Thus the front propagates at a speed 
proportional to t-3. After the front has moved far away, conditions ultimately reach a 
steady state with energy supplied by the source. I n  any layer there is a balance between 
the energy entering at  the lower plane less the energy leaving through the upper plane 
and the energy dissipation. The r.m.s. velocity components are proportional to each 
other with universal constants of proportionality. The horizontal component, for 
example, is given by 

and the integral length scale by 

where u is the molecular viscosity. The energy dissipation E decreases rapidly with 
distance from the grid: as K3/z4. 

If the fluid is initially stratified, the energy source creates a mixed layer of thickness 
D,  which increases much more slowly with time, separated from the non-turbulent 
fluid above by an interfacial layer of thickness h.  Although h is small compared with 
D, it remains proportional to D. The mixed layer has a very weak buoyancy gradient, 
so that dissipation nearly balances the energy flux divergence, and the loss of kinetic 
energy to potential energy is small. This is reflected in the fact that the kinetic energy 
u2 is much greater than the available potential energy lb, where 1 is the eddy scale and 
b is the perturbation buoyancy. The eddy length I is proportional to distance from 
the source, becoming of order D in the centre of the layer. 

The r.m.s. velocity u varies as K/z in the lower part of the mixed layer, decreasing 
with z but maintaining a proportionality to K .  In the experiment, if viscosity is 
negligible, K is proportional to the frequency of the grid$. As we approach the inter- 
face the eddies become quasi-horizontal, the important vertical component decreases 

uz/K = X I ( K / U )  (50)  

1/z = x2(K/4,  (51) 
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to a value w, and quasi-isotropic eddies of size 6, and velocity w, disturb the interfacial 
surface, creating waves of length S, and fluid velocity w,. If the stability is infinitely 
great, i.e. as fii -+ co, the r.m.s. velocity w2 tends to zero at  the interface. For finite but 
large values of fii, we have w2 N (KID)&-f and 8, - Dfii-2. This dimension is also 
the dimension of the layer over which the interface moves up and down. This length 
was measured by Hopfinger & Toly as proportional to Ri *-I, where Ri * is proportional 
to fii, which is not far from the Bi-2 behaviour predicted by the theory. 

The interfacial layer is very stable and has intermittent turbulence with inter- 
mittency factor I, - fii-3. The turbulence in patches of dimension 8, is caused by 
breaking waves of length and amplitude S,. These are energized by resonance with the 
pressure fluctuations in the quasi-isotropic eddies of length S, and frequency w2/S, 
equal to the natural frequency (Ablh)) acting on the lower interfacial surface. 

Finally, the buoyancy flux varies in both the mixed layer and the interfacial layer. 
It is a maximum q, at the level 2 = D, where it is of order wi/D and thus determined 
by the r.m.s. vertical velocity in the mixed layer close to the interface. q, N u,Ab, 
where u, is the entrainment velocity or rate of increase of D and is proportional to 
Bi-z. This is close to meamrements, but differs slightly from the Ri*-* law proposed 
by the experimenters. The entrainment law leads to a variation of D as ti% for a homo- 
geneous upper fluid compared with Dcc t+ when the upper fluid has a linear density 
gradient. The tf law reveals a slower rate of increase for the linear case as expected 
but it is somewhat slower than that measured by Linden (1975). 

This research was supported by the Office of Naval Research, Fluid Dynamics 
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Appendix 
We evaluate the important constants in the paper for a homogeneous upper fluid 

as best we can, using reasonable values when possible and data obtained by Hopfinger 
& Toly (1976). Reasonable estimates are B, = 0.4, B, = 0.4, B, = 1 and B, = 1. The 
constant A ,  in (1 7) is more difficult. If we estimate the energy flux as 3.3" and estimate 
that 4 drops off to @1w,3 a t  the top of the interfacial layer, we get A ,  = 1.35. The 
constant B, is very uncertain and we shall estimate a, instead in (41). The data of 
Hopfinger & Toly for a representative experiment yield 

1 (A 1 )  
a = 0.25, lAb[u2 = 22, ue/u = 0.02, I = 3-44cm, D = 20.5cm, 

u = 1.92 cm s-1, K = 6.6 cm2 s-l, fii = 4662, 

so that a, = 3.1 x 105. This yields B6 = 1978, so that (wi/S,) (u3/Z)-l is approximately 
1.6. We may also compute B, = 0-67. The ai in (41) and (43)-(45) are 

a, = 31, CZ, = 3.1 x 105,  0 1 ~  = 15.7, 0 1 ~  = 157. (A 2) 

w, = 1.21 ems-1, S, = 0.57 cm, I, = 0.28. (A 3) 

For the conditions of the experiment these yield 
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